Convolutional Encoders for Neural Machine Translation
نویسندگان
چکیده
We propose a general Convolutional Neural Network (CNN) encoder model for machine translation that fits within in the framework of Encoder-Decoder models proposed by Cho, et. al. [1]. A CNN takes as input a sentence in the source language, performs multiple convolution and pooling operations, and uses a fully connected layer to produce a fixed-length encoding of the sentence as input to a Recurrent Neural Network decoder (using GRUs or LSTMs). The decoder, encoder, and word embeddings are jointly trained to maximize the conditional probability of the target sentence given the source sentence. Many variations on the basic model are possible and can improve the performance of the model.
منابع مشابه
Graph Convolutional Encoders for Syntax-aware Neural Machine Translation
We present a simple and effective approach to incorporating syntactic structure into neural attention-based encoderdecoder models for machine translation. We rely on graph-convolutional networks (GCNs), a recent class of neural networks developed for modeling graph-structured data. Our GCNs use predicted syntactic dependency trees of source sentences to produce representations of words (i.e. hi...
متن کاملLattice-Based Recurrent Neural Network Encoders for Neural Machine Translation
Neural machine translation (NMT) heavily relies on word-level modelling to learn semantic representations of input sentences. However, for languages without natural word delimiters (e.g., Chinese) where input sentences have to be tokenized first, conventional NMT is confronted with two issues: 1) it is difficult to find an optimal tokenization granularity for source sentence modelling, and 2) e...
متن کاملME-MD: An Effective Framework for Neural Machine Translation with Multiple Encoders and Decoders
The encoder-decoder neural framework is widely employed for Neural Machine Translation (NMT) with a single encoder to represent the source sentence and a single decoder to generate target words. The translation performance heavily relies on the representation ability of the encoder and the generation ability of the decoder. To further enhance NMT, we propose to extend the original encoderdecode...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملCKY-based Convolutional Attention for Neural Machine Translation
This paper proposes a new attention mechanism for neural machine translation (NMT) based on convolutional neural networks (CNNs), which is inspired by the CKY algorithm. The proposed attention represents every possible combination of source words (e.g., phrases and structures) through CNNs, which imitates the CKY table in the algorithm. NMT, incorporating the proposed attention, decodes a targe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015